UNCLASSIFIED

AFIT/EN/TR95-02

Air Force Institute of Technology

On a Distributed Anytime Architecture for Probabilistic Reasoning

Eugene Santos Jr. Solomon Eyal Shimony Edward Williams

Apnl 21, 1995

Approved for public release; distribution unlimited

19950503 133

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced]
Justification

On a Distributed Anytime Architecture for| sy

e , et
Probabilistic Reasoning istribution |

Availability Codes

Eugene Santos Jr.{ Solomon Eyal Shimony? _ Avail and/or
Edward Williamsy Dist Special

April 21, 1995 ﬂ'/

7Dept. of Elec. and Computer Engineering, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH 45433-7765, esantos@afit.af.mil and ewil-
liam@afit.af.mil

iDept. of Math. and Computer Science, Ben Gurion University of the
Negev, 84105 Beer-Sheva, Israel, shimony@cs.bgu.ac.il

Abstract

An architecture for unifying various algorithms for probabilistic rea-
soning is presented. Any algorithms having anytime, anywhere charac-
teristics may be mixed in this scheme. Since algorithms for probabilistic
reasoning have widely different behavior over classes of Bayes networks,
the scheme permits taking advantage of the set of algorithms that hap-
pen to perform well for the problem instance at hand. We concentrate
on belief updating and belief revision. Some results are presented for our
system (OVERMIND) consisting of several genetic algorithm instances, A*,
etc. running in parallel.

Keywords: Probabilistic Reasoning, Anytime Algorithms, Anywhere Algo-
rithms, Parallelized Algorithms, Meta-Reasoning, Deliberation Scheduling.

1 Introduction

To satisfy the ever increasing demand for fast inferencing, especially in highly
dynamic tasks such as real-time planning and scheduling [12, 11], the ability to
provide a near optimal solution at any given moment is extremely important.
The capability of improving upon the solutions as more time and resources
are allocated is a natural way in which to continually revise and update our

1This research was supported in part by AFOSR Project #940006.

operations/conclusions. Algorithms which have this property of producing a
solution at any point in time are called “anytime” algorithms {3, 11, 18§].

Another factor that has a major impact on reasoning is that of uncertainty.
It is very rare to find something which is completely true or false. There always
seem to be exceptions to whatever rule we can come up with. Trying to encode
all possible situations as “if-then” rules, we often find our resulting knowledge
base to be unacceptably large and impossible to work with. At other times,
it may just be the case that information is currently missing or unavailable.
Unfortunately, adding uncertainty to the reasoning process results in adding
significant complexity as well [9, 32, 8].

Parallelism and distributed processing are ways of alleviating the time-
complexity of a problem at the cost of additional hardware. However, in order
to exploit parallelism, the tasks in the distributed environment must be able to
exploit intermediate results produced by the other components of the system.
Algorithms with this property are called “anywhere” algorithms. When differ-
ent algorithms having both the anytime and anywhere properties are harnessed
together into a cooperative system, the resultant architecture can exploit the
best characteristics of each algorithm.

In this paper we present such an architecture for a fast inference engine.
This architecture, called OVERMIND can be readily implemented using existing
packages such as PvM [14] and GENESIS [16]. The reasoning engine discussed
here, as part of a larger system called PESKI [27] is currently being used for
engine diagnostics for the Space Shuttle Program [2]. However, for the purposes
of this paper, we concentrate mainly on the reasoning architecture. The rest
of this paper provides some background on probabilistic reasoning, presents the
OVERMIND architecture, describes our current implementation and results, and
concludes with plans for future work.

2 Background: Probabilistic Reasoning

For the sake of simplicity, we focus here exclusively on Bayesian networks [21].
Other models have been shown to be very closely related in computational
difficulty and style to Bayesian networks [7, 31, 6, 26].

In probabilistic reasoning, random variables (abbreviated, r.v.) are used to
represent events and/or objects in the world. By making various instantiations
to these r.v.s, we can model the current state of the world. This will involve
computing joint probabilities of the given r.v.s. Unfortunately, the task is nearly
impossible without additional information concerning relationships between the
r.v.s. In the worst case, we would need the probabilities of every instantiation
combination which is combinatorially explosive to say the least.

On the other hand, we look at the chain rule as follows:

P(A4, Ag, A3, Ay, As) = (1)

P(A1|Ag, As, A4, As)P(Az|As, As, As)P(As|As, As)P(A4|As)P(45).

Bayesian networks [21] take this a step further by making the important obser-
vation that certain r.v. pairs may become uncorrelated once information con-
cerning some other r.v.(s) is known.? More precisely, we may have the following
independence condition:

P(A|CY, ..., Cp,U) = P(A|C,. .., Cn) (2)

for some collection of r.v.s U. Intuitively, we can interpret this as saying that
A 1s determined by Cy, ..., C, regardless of U.

Combined with the chain rule, these conditional independencies allow us
to replace the terms in (1) with the smaller conditionals (2). Thus, instead
of explicitly keeping the joint probabilities, all we need are smaller conditional
probability tables which we can then use to compute the joint probabilities.
What we have is a directed acyclic graph of r.v. relationships. Directed arcs
between r.v.s represent conditional dependencies. When all the parents of a
given r.v. are instantiated, that r.v. is said to be conditionally independent of
any ancestors given its parents (equation (2)).

There are two types of computations performed with Bayesian networks:
belief updating and belief revision [21]. Belief revision is best used for modeling
explanatory/diagnostic tasks. Basically, some evidence or observation is given
to us, and our task is to come up with a set of hypothesis that together constitute
the most satisfactory explanation/interpretation of the evidence at hand. This
process has also been considered abductive reasoning in one form or another
[28, 7]. More formally, if W is the set of all r.v.s in our given Bayesian network
and e is our given evidence®, any complete instantiations to all the r.v.s in W
which is consistent with e will be called an exzplanation or interpretation of e.
Our problem is to find an explanation w* such that

P(w*le) = muchxP(w|e). (3)

Intuitively, we can think of the non-evidence r.v.s in W as possible hypothesis
for e.

Belief updating, on the other hand, is mainly interested in determining the
marginal probabilities of a particular r.v. given some evidence. We can interpret
this as updating our beliefs about the r.v. when given new observations about
the world. Different from belief revision, our problem is to compute P(A = ale)
for all possible instantiations a where A4 is our r.v. of interest. We note, though,
that belief updating can also be computed using belief revision [19, 30].

As an example, consider the small Bayesian network in Figure 1; to the
right of the network are the associated probabilities. If we are given the obser-
vation that node D is true, it is our task under belief revision to determine the

2We assume that each r.v. has a finite number of instantiations.
3That is, e represents a set of instantiations made on a subset of W.

P(p) = .3
® ©
P(B) = .8

P(CIB=T) = .1
P(CIB =F) = .1
PDJA=T, C=T) = .6
P(DIJA=T, C=F) = .4
P(DIJA=F, C=T) = .4
P(D|[A=F, C=F) = .6
=T) = .7
=F) = .3

P(E|C
<:E:> P(E|C

Figure 1: A small example Bayesian network

most probable complete instantiation over all the nodes in the network which
is consistent with D being true and maximizes (3). This results in the solution
{A=F,B=T,C =F,D=T,E = F} which has joint probability 0.21168.
For belief updating, if B is our r.v. of interest, we would compute the following:
P(B=T|D=1T)=0.4256 and P(B=F|D =1T) = 0.5744.

With a small network such as this, a valid solution method is to simply
tabulate all the possible values of the r.v.s and then calculate the probabilities
manually. Once the network gets larger and more complex, this method is
obviously unacceptable and more efficient methods must be employed.

Current methods for approzimating belief revision and updating on Bayes
nets are best-first search, linear programming and genetic algorithms. (FEzact
algorithms for these problems abound which are too numerous to cite here,
see [21]. However, these are, as a rule, exponential-time algorithms.) The first
two methods are deterministic: they will find the optimal solution, given enough
time and resources. Solutions based on genetic algorithms are nondeterministic.

It was shown in [7] that belief revision can be solved using a best-first or
A* search strategy. Hence, the problem of network topology is absorbed in the
choice of a search heuristic. Furthermore, through back-tracking, the alterna-
tive solutions could be generated. Another class of techniques based on linear
programming has been shown to compute the most-probable explanation more
efficiently than other approaches [26]. By transforming the problem into 0-1 in-
teger linear programming (ILP), highly efficient tools and techniques such as the
Simplex method and Karmarkar’s projective scaling algorithm can be applied.

Nondeterministic approaches such as genetic algorithms [23] are being stud-
led since they seem to promise near-optimal solutions in relatively short time.
However, there is no guarantee of finding the most probable solution or even

achieving some sort of reasonable error bound. Recently, [29] demonstrated
that the techniques described above for belief revision can also be adapted to
efficiently perform belief updating.

While the general problem of reasoning on Bayes nets is NP-hard [9, 32, 8],
each of the above algorithms exploit different characteristics of the problem do-
main to reduce the time required to generate the solution. That is, each is po-
tentially exponential, but handles certain different kinds of networks efficiently.
The OVERMIND architecture presented in the next section pulls together these
different methods and attempts to exploit the best qualities of each to efficiently
perform the required task.

3 The OVERMIND architecture

Our architecture for a reasoning engine consists of three major components:

e Intelligent Resource Allocator (IRA) - manages and allocates available
computing resources such as multi-processors, workstations, and personal
computers.

e Overseer Task Manager (OVERSEER) - directs the flow of messages/information
between co-operative tasks and initiates new tasks as needed.

e Library of Tasks (LoTs) - contains a wide variety of tasks/algorithms
suitable for performing various reasoning computations.

As can be seen from Figure 2, the OVERMIND architecture is geared towards any-
time solutions, anywhere solution sharing and co-operative task management in
order to provide fast near optimal solutions as well as use networks of computing
resources effectively. Much of the system is constructed from existing packages
and current computing resources in the form of networked workstations and
personal computers as shown in the next section.

3.1 Library of Tasks

First, we consider the library of tasks, LOTS, in more detail. Clearly, from
our discussions in Section 2, reasoning with Bayesian networks is quite diffi-
cult. Although there are a number of approaches available, only a few of them
address the issue of anytime computations [10, 33] and none have been com-
bined together to work in a cooperative fashion. Exact algorithms are generally
exponentlal-time, but are efficient for certain classes of network (usually depen-
dent on topology). Nondeterministic methods, on the other hand, are usually
anytime, but cannot guarantee that they will reach the correct solution in finite
time. Their quality of approximation usually depends on the distributions, but
is mostly independent of topology. This suggests that the best algorithm to use
1s problem-instance dependent.

Library of Tasks
LOTS)

Sub-task/Rescurce
Requetts

Overscer Task Manager
(OVERSEER)

Resouce Requests

Inteitigent Resource Allocator
aRA)

Computing Space

Figure 2: The OVERMIND architecture.

In terms of problem suitability, it therefore seems natural to choose the best
approach per problem instance dynamically. Better yet, if a particular approach
is good at starting off a problem or solving some portion of it we can then take
its partial solution and pass it to another approach which itself may be better on
this new portion to work on. This naturally leads us in a direction amenable to
anytime and anywhere solutions. LOTS needs to contain algorithms exhibiting
both of these important properties, so that solution sharing between methods
is possible.

Up to this point, we have been referring to the individual algorithms as if
they were single processes on a workstation. There is nothing in this architec-
ture to prevent the major tasks from actually consisting of a group of parallel
processes executing on multiprocessor systems. In fact, existing systems for ge-
netic algorithms such as GENESIS [16], integer linear programming [4, 1] and A*
[17] searches can be naturally decomposed and distributed.

3.1.1 Genetic Algorithms

As we mentioned earlier, the class of solutions based on genetic algorithms
[15, 23] is a nondeterministic approach to reasoning with Bayesian networks.
Genetic algorithms take a small sample from the space of possible solutions and
uses it to generate other (possibly better) solutions. The method of generating
new solutions is modeled after natural genetic evolution. Each pass through a
sequence of operations on the current solution set is called a generation. Over
time, the hope is that the best solutions survive through to the next generation
and contribute pieces to form even better solutions. While genetic algorithms
effectively blanket the search space through swapping pieces between elements,
they have problems in determining whether the best solution so far is actually
the optimal solution. There is no stopping criterion that guarantees an optimal
answer. However, its ability to generate solutions early can serve as a starting
point if possible for other deterministic methods.

The process of evaluating the members of the population inherently produces
a number of intermediate solutions — the best of these solutions is easily saved
and distributed, exactly what we need for an anytime algorithm. The solutions
received from other tasks are easily utilized by simply inserting them into the
population between generations, so genetic algorithms also have the anywhere

property.

3.1.2 Linear Programming

At the core of this approach is transforming the search for the most probable
explanation in belief revision into an integer linear programming problem [20].
The structure found in a Bayesian network B and the evidence &£ are mapped
into a corresponding linear optimization problem L(B, &) (consisting of the
system of linear constraints and the objective function defined in [26]); such that

solutions satisfying the constraints will correspond to valid explanations by a
mapping function a (see [26]), and vice versa. Hence, properties of explanations,
such as each r.v. is instantiated to exactly one value, is preserved within the
linear system. The optimal integral solution of the system uniquely determines
the most probable instantiation (paraphrased from [26]):

Theorem 1 Let s be a integral solution to L(B,&). Then a(s) is an assignment
to B that is consistent with the evidence. Furthermore, if s is an optimal integral
solution to L(B,E), then a(s) is a most probable instantiation of B given the
evidence.

Once the transformation is completed, we can then solve the problem us-
ing powerful and efficient algorithms for linear programming such as the Sim-
plex method and Karmarkar’s projective scaling algorithm [20]. This approach
proved to be fairly efficient at performing belief revision [26].

The biggest problem in computing the optimal solution lies in the require-
ment that the numerical solutions generated be integral due to the discrete
nature of Bayesian networks (hence, integer linear programming as opposed to
linear programming). However, the key observation in [26] is as follows: For
each integral solution satisfying our linear constraints, there are a great number
of “better” non-integral solutions. As long as there is a better solution (integral
or not), this forces us to continue searching for a better solution even though we
might currently be looking at the best integral one. This is the crux of linear
programming when we are looking for integer solutions.

Clearly, the number of integral solutions is quite large. In fact, it is combi-
natorial in the number of possible r.v. instantiation. Fortunately, work done in
graph theory indicates that integer programming problems derived from graph
problems tend to move the Simplex process towards integral solutions [13] when
optimality (probability) is not considered.

Instead of searching directly for the optimal integral solution, we eliminate
the optimality condition and simply search for some integral solution which
satisfies our constraints. Obviously, we have no guarantees that this solution
will be optimal, but the process is fairly efficient. Combining this with the
introduction of linear constraints which bound the space of solutions to those
with certain probability values, we now search for an integral solution with
a specific upper and lower bound on solution quality. Then by sliding these
bounds, in this case upwards, we will move towards finding the optimal solution.
The optimal can be identified when no integral solutions exist which have a
better probability.

As we can see, [26] can be modified to generate intermediate solutions in
anytime fashion, which are then used as seeds for the generations of the genetic
algorithm. Furthermore, the genetic algorithm inherently produces intermediate
solutions that are usable by the linear programming algorithm to provide viable
“jump-start” solutions as well as to prune its solution space more rapidly [25].

3.1.3 Best-First Search Techniques (A*, etc.)

Traditional best-first algorithms, such as A*, begin with an initial state (usually
an instantiation containing only the evidence, for this problem), and perform
heuristic (possibly exhaustive) search for the optimal goal (here: complete in-
stantiation). Two heavily problem-dependent items are the next-state generator
(here: assign several more variables, in various ways), and the heuristic evalu-
ation function. Earlier work experimented with different admissible heuristics
for this problem: current cost [7], and shared cost [5]. Both are guaranteed to
provide the correct optimum, given unlimited resources (modified from [7, 5]):

Theorem 2 The best-first search algorithm, with either the cost-so-far or shared-
cost heuristic, will always halt with the highest probability instantiation con-
sistent with the evidence. If resumed at the halting point, the algorithm will
enumerate the instantiations in decreasing order of probability.

In the context of this paper, we need to be able to interface this algorithm
with other algorithms, and provide anytime-anywhere characteristics. We begin
by noting that in limiting resources, there is no guarantee that the algorithm
will give us the optimal answer. In this case, therefore, there is added incentive
in using heuristics that give better pruning at the cost of admissibility. However,
most important is the need for the following capabilities:

1. Provide an approximate answer(s) when interrupted. (anytime)

2. Allow the algorithm to accept initial guesses from another source. (any-
where)

Of these requirements, the first is by far the easier. To provide an answer,
simply pick the currently best partial instantiation, and if necessary, complete
the instantiation (for example, by random instantiation of the unassigned vari-
ables). The completion can also be achieved by selecting local optima for vari-
able instantiations, for example by using the efficient polytree belief revision
algorithm [21] or by any other fast scheme. If best-first is used to provide popu-
lations for GA, several partial solutions from the agenda of the search algorithm
can be used.

Allowing an initial guess to start off best-first is more difficult. The initial
guesses have to be compatible with partial instantiations, preferably such that
the optimal solution be reachable from these guesses. Here, we are not assured
of this property. Rather, we use best-first to find the most probable complete
instantiation among those compatible with the guess. To be useful, the guess
should not be a complete instantiation, so need to assume that other components
in the system have search states that are partial instantiations, or provide a
mechanism for making partial instantiations from the complete instantiations.
Genetic algorithms and ILP usually operate on complete assignments, and thus

in their intermediate solutions we need to “un-assign” several variables before
the solutions are passed to A*. We intend to do that by randomized methods,
and this fits in well with GA. Alternately, it is possible to modify both the GA
and the ILP to work on partial assignments [29].

3.2 Intelligent Resource Allocator

Next, our Intelligent Resource Allocator, TRA, will serve to maximize processor
use by coordinating requests for resources from OVERSEER and even possibly
the tasks themselves. Currently, we utilize a network of workstations and al-
locate single processors mainly to the major tasks such as genetic algorithms,
integer linear programming and A*. We also recognize that there are differences
in workstation/computer configurations (memory, CPU speed, I/O bandwidth,
etc.) and that the different tasks each have specific resource requirements. For
example, the GAs are single CPU intensive but require little memory while
certain ILP tasks require multi-processing. Simply identifying a Sparc2 from a
Sparc20 can improve efficiency.

For the most part, we can predict relatively easily the resource requirements
for our current collection of tasks. However, once we begin introducing highly
specialized tasks and sophisticated variants of our existing tasks, we must move
towards a model-theoretic approach of resources and requirements management.

3.3 The Overseer

In conjunction with 1RA, the Overseer Task Manager (OVERSEER) handles the
message traflicking between tasks. Currently, OVERSEER plays a simple messen-
ger role enforcing synchronized activity between the tasks. Even in this simple
scheme, the loosely coupled architecture allows us to utilize multiple instances
of the same major task with different operating parameters. Packages such as
the Parallel Virtual Machine (PvM) [14] are used to manage communications
and synchronization between tasks as well as allocate resources. They easily
form the starting foundations for both iRA and OVERSEER.

Advanced capabilities will involve determining which tasks are promising,
so that more time and hardware can be allocated to them, as outlined below.
Employing meta-reasoning to consider what computational tasks to execute is
known as deliberation scheduling [12, 11]. The overseer will essentially imple-
ment deliberation scheduling on multiple computational resources. A decision-
theoretic framework is used, in which a utility function over outcomes is given.
To operate within this framework, some form of distribution over outcomes is
needed.

In real-time probabilistic reasoning, a reasonable goal would be to get a good
approximation in minimum time, while ensuring some reasonable approximation
before a deadline elapses. Utility would thus be a decreasing function of time
and error. To enable computation of expected utility of a candidate deliberation

10

schedule, some estimate of runtime and quality of results should be available
for each algorithm. We next discuss how to obtain these estimates for best-first
search and ILP techniques.

3.3.1 Expected Utility Estimates for Belief Updating

We assume that we are computing the posterior probability (given evidence
e) of a single query node ¢, with domain values ¢; for ¢ between 1 and d, the
number of possible states for node ¢g. The best-first algorithm searches for terms
or assignments, and collects their probability mass to estimate the marginal
probability, as in [29, 22]. Assume that there is one agenda for each state of
g, and one agenda for the negation of the evidence. Let P(qie) be the current
mass collected for the joint probability of ¢; and e. Let € be the remaining mass,
i.e. mass in assignments not yet enumerated by the algorithm. }5(6) 1s the sum
of all the P(g;e).
Following [29, 22], the bounds on the conditional probabilities are:

Pac) ey pyey » 2100

Ple) +¢ Ple)+ ¢)

Suppose that we consider getting the next instantiation from some agenda,
and suppose that the (currently unknown) instantiation has effective (i.e. non-
overlapping with previous instantiations) probability §. We can now update
the probability bounds as follows. There are three cases: (1) instantiation is
inconsistent with the evidence, (2) instantiation is consislent with evidence and
¢i, (3) instantiation is consistent with some other state ¢; (and thus inconsistent
with g¢;). The resulting updated bounds are, respectively:

P(gie) + ¢ ; Plae) +6
Pl o2 0 e :
]5(q—ie)+€—___(5 le _E(_(I_ifl_

Pleyre o2 5 N

From these bounds, we can compute the new RMS (root mean square) error
for all values of ¢, for each possible selected agenda: For case (1) it reduces (after
some algebraic tweaking) to:

L V4
eRMS—p(e)+€(€ 6) (8)

11

while for instantiations consistent with the evidence we get:

23 \/C_l _
€RMS — —P(e) oo 6(6 6) (9)

It is reasonable, under the meta-greedy and single-step assumptions [24], to
make the utility of the search step a function of the reduction in RMS error,

which 1s:
Aell?MS = 6%45 - 6}%MS = = Ve
P(e) +¢

Ae23 _old 23 Vd 6P(e)
RMS = ¢ RMS ~ ®RMS (B(e) +¢) (P(e) + ¢ —96)

The latter equation cannot be further simplified, since é < ¢, but none of these
quantities are negligible w.r.t. I:’(e) or each other, in general. The remaining
problem here is twofold: (1) we do not know é before the search step is applied,
and (2) in our system, time has an impact on utility, and we do not know how
long the search step will take. Nevertheless, these can be estimated: we estimate
6 by the heuristic value of the best agenda item, and the search step time by the
execution time of previous search steps. The “expected” utility is the decrease
in RMS error divided by expected execution time, or any other such function
that takes into account the value of information over time.

Since the discussion of error estimates for best-first search is unspecific w.r.t.
the actual search algorithm, the equations apply to any algorithm that approx-
imates the probabilities by collecting mass of terms and instantiations. The
equations are easily adapted to the case where the search uses only one agenda,
by approximating the probability that the next instantiation will be of a par-
ticular class of the above three. In particular, they apply to the ILP version of
the algorithm.

(10)

(11)

4 Implementation and Results

PvM [14] was used as the IRA to manage the distribution of tasks across hard-
ware platforms. The genetic algorithms were either existing applications that
were adapted to this environment, or were developed using GENEsIS [16] as
the foundation. Finally, the A* and ILP were developed from existing code in
[26, 30] but could have easily used packages such as MINOS.

With pvM providing the framework, only a minimal amount of C++ coding
was needed to get the system running. The OVERSEER was also created to spawn
the tasks through pvM, pass them their operating parameters and datasets, and
then relay intermediate solutions as they were generated.

The first genetic algorithm was implemented on top of GENESIS, a generic
framework for implementing genetic algorithms. First, the framework was

12

adapted to work under C++, then the additional functions necessary to manip-
ulate Bayesian Networks were added. The framework was also modified to allow
it to run under PVM and to accept its operating parameters from the IRA instead
of a control file. Similarly, the ILP and A* tasks were modified by introducing
various hooks for PVM.

The platform for this implementation was a network of Sun Workstations
consisting of Sparc2s and Sparc20s. It would take only a minimum amount
of effort to port this implementation to any architecture supported by pvm,
including systems from SGI, DEC, and Intel x86-based PCs running some form
of Unix. The ovERMIND architecture could also be effective running on a single
workstation, if necessary.

For our experiments, we measured solution quality versus time. Initial test-
ing was performed using multiple instances of GAs. As we suspected, two GAs,
especially with different parameters, arrived at the same solution quality faster,
typically 20% faster. Additional GA tasks increased the speed even further.

The other algorithms were then added to a base 2 GA system. First was
HySS, a hybrid stochastic simulation algorithm not discussed in this paper,
which resulted in an 3 — 5% speed increase, then the A* search and ILP for an
additional 15 — 25% increase.

When the other algorithms were added, not only did we reach our solutions
faster, but we observed the strengths of the different methods as they combined
together. The A* tended to produce reasonable solutions immediately, GAs
took those solutions near some maximas, HySS fine-tuned those maximas, and
the ILP finished the optimization and generated the optimal solution.

5 Conclusions

The OVERMIND architecture is a first step towards providing a practical prob-
abilistic reasoning system. It exploits the anytime, anywhere properties of dis-
parate reasoning algorithms such as GAs, ILP and A* and unifies them into
a single model of computation which is naturally parallelizable. By insuring
co-operation between these algorithms through approaches such as deliberation
scheduling, OVERMIND can exploit the best characteristics of each algorithm.

OVERMIND can be built on our typical computing hardware such as net-
works of workstations, etc. and requires minimal modification of existing soft-
ware packages. The biggest amount of work lies in collecting the various al-
gorithms/tasks for the system to manage. We note though that OVERMIND is
actually general enough to work in any domain provided such a library of tasks
is available as with probabilistic reasoning.

Our experimental results seem very promising and have served to support
some of our basic expectations for the architecture. Among the future work
we foresee is an even tighter co-operation between the reasoning tasks and the
impact of increased communications overhead, the parameterization of tasks

13

and its variants such as GAs and how to dynamically generate a “promising”
task, and to continue the study of various approaches for task management and
resource allocation.

References

[1]

Paul D. Bailor and Walter D. Seward. A distributed computer algorithm for
solving integer linear programming problems. In Proceedings of the Fourth
Conference on Hypercubes, Concurr ent Computers and Applications, pages
1083-1088, 1989.

Darwyn Banks. Acquiring diagnostic knowledge of the ssme hpotp for
bayesian forests. Master’s thesis, Graduate School of Engineering, Air Force
Institute of Technology, 1995 (in progress).

Mark Boddy. Anytime problem solving using dynamic programming. In
Proceedings of the AAAI Conference, pages 738-743, 1991.

Rochelle L. Boehning, Ralph M. Butler, and Billy E. Gillett. A parallel
mteger linear programming algorithm. FEuropean Journal of Operational
Research, 34:393-398, 1988.

Eugene Charniak and Saadia Husain. A new admissible heuristic for
minimal-cost proofs. In Proceedings of the AAAI Conference, pages 446—
451, 1991.

Eugene Charniak and Eugene Santos, Jr. Dynamic map calculations for
abduction. In Proceedings of the AAAI Conference, pages 552-557, 1992.

Eugene Charniak and Solomon E. Shimony. Cost-based abduction and
MAP explanation. Artificial Intelligence, 66:345-374, 1994.

Gregory F. Cooper. Probabilistic inference using belief networks is NP-
hard. Technical Report KSL-87-27, Medical Computer Science Group,
Stanford University, 1987.

Paul Dagum and Michael Luby. Approximating probabilistic inference in
Bayesian belief networks is NP-hard. Artificial Intelligence, 60 (1):141-153,
1993.

Bruce D’Ambrosio. Incremental probabilistic inference. In Uncertainty in
Al, Proceedings of the 9th Conference, July 1993.

Thomas Dean and Mark Boddy. An analysis of time-dependent planning.
In Proceedings of the AAAI Conference, pages 49-54, 1988.

14

[12] Thomas Dean and Michael Wellman. Planning and Control. Morgan Kauf-
mann, 1991.

[13] Robert S. Garfinkel and George L. Nemhauser. Integer Programming. John
Wiley & Sons, Inc., 1972.

[14] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert
Mancheck, and Vaidy Sunderam. PVM 3 User’s Guide and Reference Man-
ual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory,
1994.

[15] David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[16] John J. Grefenstette. A User’s Guide to GENESIS. Navy Center for Ap-
plied Research in Artificial Intelligence, Naval Reseairch Laboratory, Wash-
ington, DC, 1987.

[17] Michael S. Gudaitis, Gary B. Lamont, and Andrew J. Terzuoli. Multicri-
teria vehicle route-planning using parallel A* search. In Proceedings of the
ACM Symposium on Applied Computing, 1995.

[18] Eric J. Horvitz. Reasoning about beliefs and actions under computational
resource constraints. In Proceedings of the Workshop on Uncertainty in
Artificial Intelligence, 1987.

[19] Jak Kirman, Ann Nicholson, Moises Lejter, Eugene Santos, Jr., and
Thomas Dean. Using goals to find plans with high expected utility. In
Proceedings of the Second European Workshop on Planning, 1993.

[20] George L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors.
Optimization: Handbooks in Operations Research and Management Science
Volume 1, volume 1. North Holland, 1989.

[21] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[22] David Poole. The use of conflicts in searching Bayesian networks. In Un-
certainty in Al, Proceedings of the 9th Conference, July 1993.

[23] Carlos Rojas-Guzman and Mark A. Kramer. GALGO: A Genetic ALGO-
rithm decision support tool for complex uncertain systems modeled with
bayesian belief networks. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence, pages 368-375, 1993.

[24] Stuart Russel and Eric Wefald. On optimal game-tree search using rational
meta-reasoning. In Proceedings 11th IJCAI pages 334-340, August 1989.

15

[25]

[28]

[31]

[32]

[33]

Eugene Santos, Jr. Efficient jumpstarting of hill-climbing search for the
most probable explanation. In Proceedings of Inlernational Congress on
Computer Systems and Applied Mathematics Workshop on Constraint Pro-
cessing, pages 183-194, 1993.

FEugene Santos, Jr. A fast hill-climbing approach without an energy function
for finding mpe. In Proceedings of the §th IEEE International Conference
on Tools with Artificial Intelligence, 1993.

Fugene Santos, Jr. A fully integrated probabilistic framework for expert
systems development. AFOSR Grant #940006, 1994.

Eugene Santos, Jr. A linear constraint satisfaction approach to cost-based
abduction. Artificial Intelligence, 65(1):1-28, 1994.

Eugene Santos, Jr. and Solomon E. Shimony. Exploiting case-based in-
dependence for approximating marginal probabilities. Submitted to IJAR,
1994.

Eugene Santos, Jr. and Solomon Eyal Shimony. Belief updating by enu-
merating high-probability independence-based assignments. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence, pages 506-513,
1994.

Solomon E. Shimony. The role of relevance in explanation I: Irrelevance as
statistical independence. International Journal of Approzimate Reasoning,
June 1993.

Solomon E. Shimony. Finding MAPs for belief networks is NP-hard. Arti-
fictal Intelligence, 68:399-410, 1994,

Michael P. Wellman and Chao-Lin Liu. State-space abstraction for anytime
evaluation of probabilistic networks. In Uncertainty in AI, Proceedings of
the Tenth Conference, pages 567-574, July 1994.

£ Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

s

MUDHL TERPCTLngG nLroer T Tnn Lnechien of intormation 'y estimatec 10 2verage T rOUr Per respinse nauQing Tne Ime 1O rey e inT InsirulUTNg, SEATNINT E\.S'\H"»’:‘ aata sources,
gathering ana maintaining the data neeced, ang compieting ana reviewing the collecuion of intormation. Send comments regarding this burden estimate or any other aspect of this
coliection of intormation, including suggestions for reducing this burden. 1o Washington Headquarters Services, Directorate for intermation Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1995 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ON A DISTRIBUTED ANYTIME ARCHITECTURE FOR PROBABILIS- ¢
TIC REASONING :

6. AUTHOR(S)
Eugene Santos Jr., Solomon Eyal Shimony, and Edward Williams

7. PERFORMING ORGANIZATION NAME(S}) AND ADDRESS(ES) . 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
AFIT/EN/TR95-02

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) ' 10. SPONSORING / MONITORING !
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT ; 12b. DISTRIBUTION CODE

Distribution Unlimited

vy T ey

12. ABSTRACT (Maximum 200 wqrd;)
An architecture for unifying various algorithms for probabilistic reasoning is presented. Any algorithms having

anytime, anywhere characteristics may be mixed in this scheme. Since algorithms for probabilistic reasoning
have widely different behavior over classes of Bayes networks, the scheme permits taking advantage of the set of
algorithms that happen to perform well for the problem instance at hand. We concentrate on belief updating and
belief revision. Some results are presented for our system (OVERMIND) consisting of several genetic algorithm
instances, A, etc. running in parallel.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Probabilistic Reasoning, Anytime Algorithms, Anywhere Algorithms, Parallelized 18
Algorithms, Meta-Reasoning, Deliberation Scheduling 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFIZATION 20. UIMITATION OF ABSTRACTE
OF REPORTY OF THIS PAGE OF ABSTRACT 1
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL i

NSN 7540-01-280-5500 Standard rorm 298 (Rev. 2-89)

Crosoripeg oy ANS Stz T3%9R

